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An analytical solution of the time-dependent kinetic equation for a diatomic gas is obtained. The problem of a point source of 
heat or particles is considered as an application. © 2005 Elsevier Ltd. All rights reserved. 

For problems related to transfer phenomena in molecular gases [1], analytical solutions have only been 
obtained at present in the time-independent case [2-6]. 

Consider the equation 

~to ~to 
a--7 + CzYxx = z[to] (1) 

Here to is the correction to the equilibrium (Maxwell) distribution function, which in the case of a 
diatomic gas considered here, is given by the relation 

fo = " o / ~  ) ~ o e X p ( - C 2 - y 2 )  , C = V m , Y = co 

where V and co are the natural velocity of translational and rotational motion of the gas molecules, m 
and J are the mass and moment of inertia of the molecules, k is Boltzmann's constant, and To and no 
are the unperturbed values of the temperature and density. 

We will assume [2] 

3 

l[to] = ~ P i M i - t  o 
i = 1  

where 

-3/2 M i = 2re I P i t o e x p ( - c Z - y 2 ) y d y d 3 C  

We will put Cx = g and represent to in the form 

to = e l Y l ( t , x , g ) + e : Y z ( t , x , g  ) 

1.~2 2 2 
e I = 1, e 2 -- V{C. - ~ + - V2), v = ~  

(2) 
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As a result, Eq. (1) is reduced to an integro-differential equation in the vector Y = Y1y2 : 

+ ~  

Y(t, x, p.) = jK(g ,p .1 )Y( t , x ,  g l )exp(-gl )dg 1 

389 

K(g, gl) = 

_1 2 2 2 
l+2!Ltg l+~(g  2 ~ ) ( g l - ~ )  ~V(t-t - ~ )  

2 2 ~V(g  1 __~) 2 2~V 

Separating the variables, as in the well-known approach [7], we can represent the solution of this 
equation in the form 

Y(t, x, ~t) = e xp0J t -  (6 + 1)x/rl)F(6, 11, l-t) 

The components of the vector F are found from the system of characteristic equations 

2 ( _._)o 0 2 NI+2 -12 2 .o 2 < ,  7~ 1/2 1 ( + 1)F 1 = N 1 + - - - ' i - ~ (  N 1 - /V 1 + 
n 

( ] V 2 o 2vNO ) - -  ~ 1)F 2 ~ ( 2 N 1 - N I +  1/2 1 ( + = 
il 

(3) 

+ ~  

ot f cz 2 N i = F i g  exp(-g  )dg (4) 

Following the procedure proposed earlier in [8], we express the higher moments of the function F 1 
occurring in ~s tem (3), (4) in terms of N~. To do this we multiply the first equation of (3) by exp(-g 2) 
and gexp(-g ~) and integrate over the whole range of variation g. Solving the system of equations 
obtained, we find 

a NO ( n~ )a NI = 1~,'~-~ ) 

Hence, Eqs (3) and (4) can also be represented in the vector form 

7CI/2(TI - g)((Y+ 1)F = qAN (5)  

1](Y 

N = 

0 + ~  

N1 = j" Fexp(-g2)dg 
0 

N 2 -~ 
(7) 

Equation (7) can be regarded as the normalization condition for the function F. 
When r I is not a real number, we obtain from Eq. (5) 

-1/2 
rc 11 

U1 -b t ) (~  + 1) AN F - (8)  
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The values of 11 corresponding to this solution are defined by condition (7), which gives 

-1/2 + ~  

N = ~0+111 f Aexp(-/'t2)11d-lal.tN 

A non-trivial solution of this equation exists when 

detA(o, 11) = 0 

Here 

(9) 

A(O, 11) = (O+ 1)E-  rt-1/211 S Aexp(-bt2)~btbt 

0+1+~.c(rl)+2~1(~,c(11)+1)+)~11 V~, 1 

2 
~V£~(11)/ 0 + 1 + ~ ( 1 1 )  

~c(q)(2112- 1) + 2112 ( no  "]2_! 
5 , l = \ o + 1 )  2 

(10) 

= z exp ( _ 2 )  Z 

where E is the identity matrix. Then, the normalized vector N itself can be defined, apart from an arbitrary 
constant, by the equation 

N = cons t  A22 
- A 2 1  

(u) 

To solve the dispersion equation (9) we make use of the theory of boundary-value problems of the 
function of a complex variable (see, for example, [9]). Note that D(z) = detA((y, z) is an even piecewise- 
analytical function in the complex plane with a cut along the real axis. We will denote the contractions 
of this function in the upper and lower half-planes by D + and D- respectively. Consider the homogeneous 
Riemann boundary-value problem 

X+(x) = G(x)X-(x), x~ ~ (12) 

with the coefficient G(x) = D+(x)/D-(x), where De(x) = limD(x + iy) wheny --+ -+0. 
By virtue of the generalized Liouville theorem, the general solution of problem (12) is given by the 

expression 

1( 

D +-(z) = a ( z  + i)-21(X+-(z) I ' I  -z2) 
a . = l  

where 

= ¢z+C# X+-(z) \7 -~J  exp(F(z)) 

l-'(z) = ~ In I -t- ~ -  
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~: = ~indG(x)= l[arga(x)lK,  R+ ~ (0, oo) 

Hence, to determine 11a it is sufficient to calculate D -+ and X e for arbitrary ~; + 1 values of z and 
solve the system obtained for these quantities and the constantA. The values of -11~ obtained are the 
required roots of Eq. (9). 

Taking expression (11) into account, we obtain from relation (8) 

-1/2 1 ) 11c~ A22All - A21AI2 (13) 
F(O, rlc~, g) = (11c~- bt)(o + A22A2t _ A21A22 

where Aq and Aij are the components of the matrices (10) and (6), calculated for 11 = q~. 
In the case of real values of 11, the following functions are solutions of Eqs (5) and (7) 

=(re  -m 11 A+exp(n2)Af(r l -g) )aN+l  
O(a ,q ,  p) \ r l - p  

(14) 

where all the integrals of the function (14) must be evaluated in the sense of the principal value of the 
Cauchy integral. 

In view of the arbitrary nature of the normalized vector N, the solution (14) can be represented as 
the superposition of two independent functions 

2 1 

11 p 
v 

2btrlo 
0 2  = /i;-1/2 11_ 1 + 

11 P 0 

~.I) 2 1 2 
;~p(11)(11 - ~ )  +rl 

exp(11a)8(11 - 5 ( 0  + 1) + v)v(rl) 
+ 

g) 2 
11o O+ 1 + ~p(q )+  2(~p(TI)+ 1)~--~--~ 

+ e x p ( 1 1 2 ) 8 ( r l  - 2 2 

o + 1  o l l  
2v (o + 1)v 

Here 

q 
Xp(11) = -211 exp(-112)Iexp(I-t2)dl -t 

o 

The functions O1 and (I) 2 constitute the continuous spectrum of solutions of Eq. (5). 
It can be proved (see, for example, [7]), that the system of equations obtained represents a complete 

system of orthogonal functions, which satisfy the conditions 

IF(G, 11a, g)F(a, 11[~, g)exp(-g2)gdg = 8c4~Ncc 

+ ~  

F(o,  11m I-t)~13(°, q, ~t)exp (-~t2)gdg = 0 (15) 

+ ~  

I Xc*(°' q'' bt)O~(°' 11' P')exp(-bt2)btdg = 8c~[~8(11 - 11')N° 
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X I = NlllIII-N12(I}2, X 2 = N221112-NI21:]DI 

( e°) Nil = o + l + ) v p ( l l ) + 2 ( X p ( ' q ) + l ) ~ - -  ~ + 

1 t'O + 1 z 2,2 + 21120.] 
+ 2 (  2 ~ ) + r t r l 2 e x p ( - 2 1 1 2 ) (  l ~-7-iJ 

+ 1"1202 5 )~p(T])) + ( °  l ~ -~ -~ ) (~ (u+ l )  + NI2 = 2 

2 
r i o  2 

+ ~rl2exp (-2TI2)(r12- ~)(  1 + o + l J  2rl2°) 

N22 -~ (~.p(TI)(TI2--~)-[-TI2)2I-2(~((Y-F 1)+~,p(rl))2+ 

+ gl"l 2 exp (-21"12)((1"[2- ~)2 + 2) 

No = ~1 exp012)(N11N22 - N~2) 

In view of the extremely long expressions for Na it is best to calculate them directly by numerical 
integration. 

We will consider, as an application of the solution obtained, an infinite plane heat source of power 
W(t) = exp(ot), situated in the x = 0 plane. 

The distribution function in this case can be represented in the form 

Y(t, x, It) = Y±(o, x, g)exp(ot )  for +x > 0 

where 

Y-+(o, x, g) = + y  A~Fa(o, +rla, g)exp(zF(o + l)x/rl~ ) + 

2 -+~ 
+ ~ I B~q~l~(° ' r l 'g)exp(-(°+ 1)x/rl)dq 

[3=00 

(16) 

g ( Y + - Y - )  = S when x = 0 

Hence, by virtue of conditions (15), we obtain 

+ ~  + ~  

A~ = f F(O, +11~, g)Sexp(-g2)d~t, B[~ = I X[3Sexp(-II2)d~t (17) 

where the summation in the first term must be carried out only over those values of c~ for which 
Re( (o  + > 0. 

The coefficients A and B are found from the jump condition 
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In the case considered 

= ~  } - t 2 - 1  
S = S h 

V 

Correspondingly 

h 
+ a s  r~ + 1 ( N  1 h h ~ + 1 "N b h 

= - -  lbl - N12b2) ,  B2 = " ' ~ 0  ( 22 2 -  Nl2bhl) ATz = ~a'  BI No 

2 2 
h 2Via ~ (J + 1 h h 

as = 5~+1  5 ' bl  = 1, b 2 = 0 

h 

Y~(o, x, g) = + Fa(o, +rla, ).t)exp(~(o + 1)x/lla) + 

O~ 

_+~ 

+ I ~ + 1 .  - -~o Alexp(-(r~ + 1)x/TI)drl 

o 

For relative temperature drops 

A T -  
T -  T O 

To 
2 _ 5 _ 72)TdTd3C _  ) exp -C2 

and a density of the gas molecules 

A N -  
n - n o 

n o 

- 2/~-3/2Iq0exp ( _  C 2 _ T2)Td~d3C 

we have 

(aha)2 
A T  h = g - l / Z e x p ( ( ~ t )  + ~ e x p ( ~ : ( o +  

+ ~  

+ (~ + 1 )2 1 ~ exp (-(~ + 1 )x /r l )dr l  

0 

h p 
~ aaacL 

AN h = rt-I/2exp(ot)|+~_~--~--exp(:t:(o 
\ a a 

+ ~  

- (C~ + 1 )z-~ Nl2 1 )x /~ l )dr  I 
N-"o exp ( - (o  + 

0 

1)x/qa) + 

+ 1 )x /r l~)  - 

In the case of separate excitation of the translational and rotational degrees of freedom 

2 2 7 2 S v = ~ C  - 1  a n d  Sm = - 1  

the vectors F and X~ must be represented in the expanded form 

F = e l F  I + e z F  > Xf~ = e l X l f ~ + e 2 X 2 f  ~ 

(18) 
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The following relations are then satisfied 

A~ = (elFl(o,  +via, g) + e2Fe(a, +rla, g))Sexp(-  C e - y2)~tdTd3C 

B~ = 2 f ( e l X l l  ] -+- e2X2f3)Sexp(-C 2-'~2)~[d'~d3C 

It is of some interest to calculate the relative temperature drop corresponding to the average energy 
of translational and rotational motion of the molecules: 

AT v = ~ \ @qoexp(- C - 72)TdTd3C 4 -3/2I(C2 - 3 2 

a T  ~° = 2 / ¢ - 3 / 2 y ( ~ 2  - l)q0exp(- C 2 - y2)ydyd3C 

To complete the picture we must consider 

Sp = 1 
0 

which corresponds to a source of particles. 
The values of the macroscopic parameters of the gas in these cases are given by the relation 

s m 

m -1/2 aaaa Ms(t, cy, x ) = +It ~ . - -~exp (~ t~z (c s+  l)x/'q~)+ 
O~ 

-+~ s m s m s m s m 
+/t-1/2(6 + 1)2 ; Nllblbl + N22b2b2 - N12(blb2 + b2bl ) 

No 
0 

exp(cyt- (c + 1)x/rl)drl (19) 

Here and henceforth the superscript s indicates the nature of the source: s = 1 - Sh, 2 - S,, 3 - So~, 
4 - Sp, and the values of rn = 1, 2, 3, 4 correspond to AT, AT v, AT c°, AN. We then have 

b~ ~ 3 5 4 
= b l = ~ ,  h i = 0  

2 l ( n o ' ~ 2  1 3 1 1(" q~ ' )  2 4 

b2 = 3\~+"1)  - 6 '  b2 = 4 - 2 \ ( y + l J  ' b2 = 1 

2 10(c+ 1) + ~,c(~%)(2(rle~')2 11 
a~ = 30 \ \ a +  1) 

4 3 ~ ' c ( r l a ) ( l _ 2 ( q a ~ 2 ~ ,  a 4 = ~+l+~)~c(r l~  ) 
aa = 2-O \ \ ~ + 1 )  ) 

1 bl and b~ are given by relations (18). In passing we must draw attention to the The coefficients a~, 
symmetry of the moments of the distribution function with respect to an interchange of the upper and 
lower subscripts, i.e. M~ = M~.  

It is obvious that a plane source can be considered as a system of isotropic point sources. Consequently, 
in the (linear) approximation considered, the distribution of any scalar quantity Ppl can be expressed 
in terms of the distribution of this quantity, produced by a point source Ppl, i.e. 

pp,(X) = IPpt(r)dZ = 2xlrppt(r)dr 
x 

where r is the distance from an element of the surface d~  to the point of space considered. 
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Hence it follows that 

1 dppl(r) 
PPt(r) = 2/tr dr 

Hence, for an isotropic point source 

$ m 

m G + 1 ~-. aaaa . _ .  
M s (t, G, r) = 2-'572- 2.n---S-N e x p t ° l -  (G + 1)r/rio0 + 

z g  r ~ . , a  a 

3 - t -~ ~ S  ~ t t /  S m S m S m 

( G + I )  fNll0101 +N22b2be -N12(b lb2+b2b l )  
-2-3/7-- j 
zTt r o qN° 

exp(Gt- (0 + 1 )r/q)drl (20) 

In the case of an arbitrary time dependence of the source power it can be represented in the form 
of a Fourier integral 

1 
W(t) = f Woexp(io~t)do, W°~ = 2"~ I W ( t ) e x p ( - i o t ) d t  

and, by virtue of the linearity of the problem, we can consider the distribution of the macroscopic 
parameters of the gas as the superposition of corresponding quantities produced by the individual 
harmonics 

Mm(t, r) = I W°Mm(t'  i(o, r )exp( io t )d t  

We will analyse the solution obtained. 
In Fig. 1 we show the regions C1, C2 and C3 of variation of the parameter G, in which the dispersion 

equation has two, four and six roots respectively. For the negative half-space, ImG, the pattern has a 
form that is symmetrical about the real axis. A numerical analysis shows that, when G approaches the 
boundary of these regions from the inside, the imaginary part of one of the pairs of roots tends to zero, 
and the solutions corresponding to it transfer into the solutions of the continuous spectrum, in which 
case the general solution, i.e. the sum of the solutions of the continuous and discrete spectra, remains 
a continuous function of G. 

In the immediate vicinity of the source (r ~ [ G + 1 [ ), the solutions of the continuous spectrum make 
the main contribution to expression (20). The value of the integrals is then determined by the small 
values of q, for which 

ImG C~ 

1 

- 0 

\ 
i 

/ 
ReG 

Fig. 1 
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9 5 ~ 
~.p = 0, NIl = g ( 6 +  1) 2 , NI2 = ~(6+ 1) ", N22 = (6+  1) 2 

N O = ~ ( 6 +  1)4q,  f e x p ( - ( 6  + 1)r/rl) r(cy+ 1) 
0 

Correspondingly 

A T  h - 
9 co _ l 

50/3/2r2,  A T  h = ATo~ 5/3/2r2 , A N  h = A T p  - 

1 

10rc3/2r2 

p -  1 
a T  v : A T  v = a T  h : AT°t~ : A T ;  : - a N  v : - a T  6Tc3/2r2 

Hence, the distribution of the majority of the moments mentioned in the region of the source is 
independent of G and is determined solely by its instantaneous power. An exception is AT;  = ANt0, 
the values of which in the limit considered are specified by the following terms in the expansion in rl, 
which make a contribution to the distribution of these moments proportional to 1/r. 

As one moves away from the source, the second term in expression (20) decays more rapidly than 
the first. Hence, in the limit as r ~ ~ the distribution of M~" is determined by the solutions of the discrete 
spectrum (if such exist). 

We are particularly interested in analysing the behaviour of the solution in the case of small values 
of 6. Substituting into Eq. (9) the obvious asymptotic representation 

_ ~ ( 2 n - l ) ! !  

~,c(Z) = n/~=O 2nz 2n 

we obtain, apart from the first non-vanishing terms in z 

7 76 3 - - + G  
20@ 10q 2 

Hence we obtain 

Correspondingly 

= 0  

q-+l = + ~ O - I '  1]+2 = --+(26) -l/2 

_ 49 N+2~/-~1]-+2 = ~0 N+I 4/-~rl-+l 6256' 

2 ~ 4 4 1 
a-+l = 2-5' a+2 = - a + l l  = -a-+2 = - 5  

2 3 2 3 3 1 3 1 
a+-I = 2-5' a+-2 = - i ' O '  a+-I = f O '  a+-2 = -'2-0 

Hence, in the limit as 6 ~ 0 

A T  h = AT~h s + IX1 

= a V o  = A g s +  5 6 '  + t ,2 At2'  = = 5 1 1 , - I , 2  
6 ' 4 

25111 + 10112 + I22 to v 25111 - 122 
aTv = AT~+ 36 ' ATv = AT~ = A ~ ' +  24 

25111 - 10112 + 122 -- + 
16 
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ATp = ATaps-I12, ATVp = ATap s 5112 + 122 AT;  = A~p s 5112-122 
6 ' 4 

A N  h = AN~h s -112  

A~,~s 5112 + 122 5112 122 
6 ANp  = A/~p + •22, ANo = AN~h s ANu L.~/V h ' 4 

lij = ~  ~/2 In@o exp(-r/"q)drl 
zT~ ro "t u 

which corresponds to the solution of the t ime-independent problem. In this case the functions 

AT~hS=-ANkhS = 1/(7~r) 

describe the distribution of the temperature  and density of the gas molecules produced by a time- 
independent point source of heat at a fairly large distance from it, and is independent of the method 
by which the energy is excited; the functions 

A / ~ p S = - A ~ p ~ =  1/(7rcr) 

describe the asymptotic distribution of the temperature  and density of  the gas molecules produced by 
a t ime-independent particle source. 

The results obtained can be used for a theoretical analysis of the features of heat and mass transfer 
in rarefied gases, in particular, when investigating the thermal effects of the interaction of a laser beam 
with a material, which is particularly important when investigating the phenomenon of thermal self- 
focusing and defocusing of a laser beam in an absorbing medium, particularly in the case when the 
characteristic heat liberation time is comparable with the time of the mean free path of the gas molecules. 
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